Emotion Recognition¶
This example showcases the implementation of two stage neural network pipeline, where the first stage is a face detection network, and the second stage is an emotion recognition model.
Note
Visualization in current example is done with blocking behavor. This means that the program will halt at oak.start()
until the window is closed.
This is done to keep the example simple. For more advanced usage, see Blocking behavior section.
Demo¶
Setup¶
Please run the install script to download all required dependencies. Please note that this script must be ran from git context, so you have to download the depthai repository first and then run the script
git clone https://github.com/luxonis/depthai.git
cd depthai/
python3 install_requirements.py
For additional information, please follow our installation guide.
Pipeline¶
Source Code¶
Also available on GitHub.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 | import cv2 import numpy as np from depthai_sdk import OakCamera from depthai_sdk.classes import TwoStagePacket from depthai_sdk.visualize.configs import TextPosition emotions = ['neutral', 'happy', 'sad', 'surprise', 'anger'] def callback(packet: TwoStagePacket): visualizer = packet.visualizer for det, rec in zip(packet.detections, packet.nnData): emotion_results = np.array(rec.getFirstLayerFp16()) emotion_name = emotions[np.argmax(emotion_results)] visualizer.add_text(emotion_name, bbox=packet.bbox.get_relative_bbox(det.bbox), position=TextPosition.BOTTOM_RIGHT) visualizer.draw(packet.frame) cv2.imshow(packet.name, packet.frame) with OakCamera() as oak: color = oak.create_camera('color') det = oak.create_nn('face-detection-retail-0004', color) # Passthrough is enabled for debugging purposes det.config_nn(resize_mode='crop') emotion_nn = oak.create_nn('emotions-recognition-retail-0003', input=det) # emotion_nn.config_multistage_nn(show_cropped_frames=True) # For debugging # Visualize detections on the frame. Also display FPS on the frame. Don't show the frame but send the packet # to the callback function (where it will be displayed) oak.visualize(emotion_nn, callback=callback, fps=True) oak.visualize(det.out.passthrough) # oak.show_graph() # Show pipeline graph, no need for now oak.start(blocking=True) # This call will block until the app is stopped (by pressing 'Q' button) |